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Many factors influence the shapes of living and manufactured membranes. In addition to boundary condi-
tions, surface tension, and curvature, the ordering of particles embedded in or attached to a membrane can
strongly influence its equilibrium shape. As a simple model of such ordering, we consider rodlike particles that
align to form a so-called nematic phase in the plane of the membrane. We call any sheet with such embedded
orientational order a nematic membrane. Nematic membranes can occur in biological cells, liquid crystal films,
manufactured materials, and other soft matter systems. By formulating the free energy of nematic films using
tensor contractions from differential geometry, we elucidate the elastic terms allowed by symmetry, and
indicate differences from hexatic membranes. We find that topological defects in the orientation field can cause
the membrane to buckle over a size set by the competition between surface tension and in-plane elasticity. In
the absence of bending rigidity the resulting shape is universal, known as a parabolic pseudosphere or a
revolved tractrix. This buckling is the two-dimensional analog of the bent cores of line defects that are
frequently observed in bulk nematic liquid crystals. Bending costs oppose such buckling and modify the shape
in a predictable manner. In particular, the anisotropic rigidities of nematic membranes lead to different shapes
for aster and vortex defects, in principle enabling measurement of couplings specific to nematic membranes.
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I. INTRODUCTION

The fascinating shapes of membranes and thin films are
often the result of geometry and topology rather than particu-
lar chemical reactions or a unique tuning of parameters. En-
ergy dissipation under geometrical and topological con-
straints can guide a system into equilibrium forms and
patterns that are common among many systems with a wide
range of microscopic components. One category of such con-
straints results from the alignment of filaments or rodlike
particles adhered to a membrane. Regardless of the detailed
chemistry of the membrane and particles, such a system has
global constraints that influence its shape. Topological �cow-
licklike� defects arise naturally in the aligned filaments; the
relaxation of these vortex- and star-shaped structures influ-
ences the overall shape of the membrane.

To better understand these patterns and their effect on the
shapes of living cells and other condensed matter systems,
we develop a simple model that idealizes many aspects of
real membranes. We treat the membrane as an infinitely thin
surface characterized only by its curved shape, and represent
the filaments by a vector field in the tangent plane of the
surface. This simplified model is known as a “nematic mem-
brane.”

Thus, a nematic membrane describes any flexible sheet
incorporating ordered rodlike constituents. For example, thin
films of smectic-C liquid crystals are nematic membranes
�1–5�. Also, recently developed sheets of carbon nanotubes
have nematic character �6,7�. Nematic order arises in lipid
membranes with inclusions �8� and in the cell cytoskeleton,
e.g. during mitosis �9�. Interestingly, in vitro experiments on
mixtures of cytoskeletal filaments and protein motors ob-
serve topological defects �asters and vortices�, which spon-

taneously self-organize into a variety of patterns �10–12�.
These experiments, and related simulations, use flat geom-
etries with various boundary conditions �13,14�. Similar to-
pological defects influence the shapes of real cells. For ex-
ample, cells of the alga Bryopsis sprout branches out of
vortex-shaped defects that appear naturally in their cell wall
of cellulose microfibrils �15�. To take a step toward under-
standing such living and in vitro systems, we consider equi-
librium shapes around defects in deformable nematic mem-
branes.

We show that topological defects can buckle the mem-
brane. This has similarities to two other systems. One is bulk
nematic liquid crystals, which buckle into the third dimen-
sion around defect lines �16–18� in a manner directly analo-
gous to the shapes we find. The buckled cores of defect lines
are familiar to liquid crystal experimentalists. A second ex-
ample is provided by deformable triangular latices, which
have been studied extensively in the theory of two-
dimensional melting. While the physical picture is different,
the model energy is equivalent to a nematic membrane with
isotropic elastic constants. Disclination defects culminating
in a site with five or seven bonds �instead of the usual six�
can lower their energy by buckling �19–22�. When draped
over curved surfaces, collections of such defects arrange in
specific patterns �23–26�. If surface tension is neglected,
fivefold disclinations assume an approximately cone-shaped
form �20�.

In contrast to the above cases, competition between the
cost of surface area and rod misalignment determines the
shape of the defects we consider. When bending rigidity is
neglected, we find that topological defects deform mem-
branes into a simple universal shape known as a parabolic
pseudosphere �27,28�. The size �height and extent� of this
universal form is governed by the ratio of surface tension to
in-plane elasticity. The inclusion of bending rigidity opposes
this puckering. If the bending cost is small, the singularities
at the tip and rim of the defect become smoother. The loga-*jrf@mit.edu
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rithmically diverging tip of the parabolic pseudosphere is
replaced by the finite height of an elliptic pseudosphere �28�,
and the sharp rim is replaced by an exponential falloff with a
length scale related to the bending rigidity. Higher bending
costs completely eliminate the buckling instability. The an-
isotropic elasticity of nematics singles out specific defect ori-
entations �asters and vortices�; and corresponding anisotro-
pies in bending rigidity lead to different length scales for
their shapes.

The rest of the paper is organized as follows. In Sec. II,
we describe the free energy of a nematic membrane using
tensor contractions from differential geometry. This provides
a compact formulation applicable to all deformations, includ-
ing highly curved shapes. In Sec. III, we describe vortex and
aster defects, derive shape equations for radially symmetric
configurations, and solve them to find the buckled defect
shapes. Section IV provides a summary and indications for
future research. In particular, we discuss aspects of experi-
ments that could possibly be designed to observe these buck-
led shapes. In Appendix A, we study filament orientations in
fixed geometries, which may provide other ways of measur-
ing the nematic membrane parameters. In Appendix B, we
check the linear stability of the buckled defect shapes.

II. ELASTIC FREE ENERGY OF NEMATIC MEMBRANES

Using differential geometry to describe a two-surface in
three-space, we construct a power series expansion for the
free energy by selecting a linearly independent set of scalar
contractions of the surface tensors. For a surface described

by an embedding vector X� ��1 ,�2�, one constructs tangent

vectors t�i=�iX� by taking derivatives of the embedding vector
with respect to its two parameters. The metric tensor is then
gij = t�i · t�j. The covariant derivative is defined such that Digjk
=0. The curvature tensor is constructed from covariant de-

rivatives of the tangent vectors as Kij = �Dit�j� · N̂, where N̂ is a
surface normal. One must choose a side to define the sign of

N̂. In the principal direction basis, Kab= �
1/R1

0
0

1/R2
�, where Ri

are the radii of curvature �29�.
A unit-magnitude tangent vector field T� =Tit�i represents

the nematic particles. At constant filament density, the mag-
nitude TiTi=1 is fixed and only its orientation changes.1

Nematic symmetry implies invariance under Ti→−Ti.2 A
complete set of scalars up to second order in derivatives is

Fnematic = � +
K1

2
�DiT

i�2 +
K3

2
�DiT�

j �2 +
��

2
�TiKijT

j − H��2

+
��

2
�T�

i KijT�
j − H��2 +

��

2
�TiKijT�

j − H��2.

�1�

This free energy density must be integrated with a surface

area element dA=�gd2�, where g is the determinant of the
metric. The weighted antisymmetric tensor �ij =�g�ij rotates
one-tensors by � /2, such that T�

i =�ijTj �29�. Note that
�ijg

jk�kl=−gil and Di� jk=0. Each term is manifestly positive,
so stability demands that the moduli be positive. In the re-
mainder, we consider reflection-symmetric nonchiral mem-
branes without spontaneous curvatures H�,�,�.

Unlike parametrizations used to study nematic mem-
branes near the hexatic fixed line �30,31�, this set of scalars
cleanly delineates the anisotropic bending energies that make
nematic membranes unique. A linearized form of this free
energy was written down by the Orsay Group �1� using ro-
tations of the smectic director field to represent both smectic
layer curvature and implicitly the director orientation. The
relationship between the Orsay Group’s linearized bulk
model and a linearized two-dimensional model was clarified
by Shalaginov �5�. Helfrich and Prost �2� used a nonlinear-
ized form of these terms in studying membrane ribbons. Cre-
ating more surface area costs � �32,33�. In-plane splay and
bend cost K1 and K3, which are the two-dimensional analogs
of the bulk nematic Frank constants �5,34�. Membrane cur-
vature in the direction of the local filament orientation costs
�� �30,31,35�. Curvature perpendicular to the filaments costs
�� �30,31�. These out-of-plane bending terms are the aniso-
tropic analogs of the Canham �36� and Helfrich �37� bending
rigidity. Saddle curves cannot be constructed from the other
two out-of-plane bending terms and incur an independent
energy cost of ��. The square of the chiral scalar TKT�

�2,30,38� is nonchiral. The underlying membrane has a fluid
character in that the particles can rearrange in the surface
without stretching or shearing costs.

Compared to the splay, bend, and twist of bulk nematics,
nematic membranes have additional freedom that comes
from relaxing a constraint: instead of three fields constrained
to a unit vector, the nematic membrane constrains only two
fields to a unit vector and allows a third field to range freely
in describing the membrane’s local deviation from flatness.3

In a system of motor proteins pulling on cytoskeletal fila-
ments, K1 would be proportional to motor density, which we
assume to be uniform, and �� would be determined prima-
rily by the bare membrane’s isotropic rigidity. Filament ri-
gidity would influence both K3 and ��. See Appendix A for
comments on ��.

Perturbative renormalization group �RG� near the hexatic
fixed line �31� shows that thermal fluctuations reduce weak
anisotropy, i.e., the three quantities ��−�� −��, �� −��, and
K1−K3 fade at long distances, so that only the hexatic mem-
brane energy remains, and

Fhexatic = � +
KA

2
�DiTj��DiTj� +

�

2
�Ki

i − H0�2, �2�

where KA= 1
2 �K1+K3� and �= 1

2 ��� +���. Under further res-
caling, �→0 and KA is unrenormalized. Note that while the
hexatic energy takes its name from the sixfold symmetry of

1Relaxing TiTi=1 would introduce independent TKKT and
T�KKT� terms and several new gradient terms.

2Dropping the nematic symmetry requirement introduces four new
spontaneous curvatures, two of which are chiral.

3Such constraints deserve further study in the spirit of Capovilla
and Guven’s study of membranes with isotropic rigidity in Ref.
�56�.
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triangular lattices, any n-atic symmetry with n�3 restricts
K1=K3 and ��=�� =2��. For polar �n=1� or nematic �n
=2� membranes, the isotropic approximation is an important
limiting case at one extreme of a phase diagram that deserves
further attention.

Since KA is unrenormalized, patches of membrane mate-
rial much larger than the thermal persistence length are well
described by a free energy with only surface tension and the
hexatic energy. Estimates of the thermal persistence length 	T
of weakly anisotropic rigid membranes indicate an exponen-
tial form ln 	T
� �31,39,40�. Modest changes in � can thus
sweep the persistence length from small values up to thou-
sands of times the short-distance cutoff �41�. Shape distor-
tions unique to the nematic membrane can then appear in
patches of material smaller than this persistence length. In
Sec. III, we derive the buckled shape of defects in both iso-
tropic and anisotropic membranes. We also derive the shape
modifications that result from bending rigidity ����0 on
these shapes. Given the wide range of experimentally ob-
servable thermal persistence lengths, one might find buckled
defects of all these types.

III. BUCKLED DEFECT SHAPES

In the nematic phase, the rod orientation varies slowly
throughout most of the material. However, at particular de-
fect points, the orientation may be undefined, because rods at
neighboring locations point in all directions. The topological
charge of a defect is the number of times that the orientation
rotates through 2� as the coordinate angle � sweeps through
2�. Different patterns appear for integer, half-integer, and
positive and negative charges. The defect depicted in Fig. 1
is radially symmetric, and is rotated by a uniform angle 	
with respect to the radial vectors.

In the limit of isotropic rigidity, +1 defects with any ra-
dially uniform 	 have the same energy. The symmetry is
removed by the anisotropic moduli in a nematic membrane,

which distinguish asters �	=0� and vortices �	=� /2�. The
energy of such a planar defect as a function of 	 is

Eplanar�	� = ��K1 cos2�	� + K3 sin2�	��ln
R

a
+ Ec�	� , �3�

where R is the size of the membrane, a is a short-distance
cutoff, and Ec is a core energy reflecting the defect’s micro-
scopic situation inside of the core radius a.

For K3�K1, asters have lower energy than vortices and
are stable against in-plane deformations. If K1�2��, the de-
fect energy is further reduced by buckling out of flatness to
align the filaments in the third dimension. �See Appendix B
for a linear stability analysis.� Buckling comes at the expense
of creating more area, so surface tension sets the size of the
deformation. Analogously, when K1�K3�2��, vortices are
stable and can reduce their energy by tilting the surface
around the defect.

To study this buckling, we minimize the nematic mem-
brane energy, Eq. �1�, around fixed aster and vortex arrange-
ments. For a radially symmetric surface with no overhangs,
we use the polar Monge tangent representation with embed-

ding vector X� �r ,��. The height above the Monge plane is
found by integrating the tangent angle �r� from a base
value, so that

X� �r,�� =	
r cos���
r sin���


r

tan��r���dr�� . �4�

This yields a metric with no derivatives and thus lower-order
shape equations. To handle shapes with overhangs, such as
prolate vesicles �42�, one can parametrize the shape by con-
tour length instead of Monge radius.

The unit-vector constraint is enforced by defining the
angle 	 such that

Ti = �cos�	�cos��
sin�	�/r  . �5�

With this parametrization, the nematic membrane free energy
becomes

Fnematic = 2�
 dr��
r

cos��
+

cos��
2r

�����sin2�	�tan2�� + r2 cos2�	��2�

+ ���cos2�	�tan2�� + r2 sin2�	��2�

+ �̄� sin2�	�cos2�	��tan�� − r��2

+ K1�cos�	� − r sin�	�	��2

+ K3�sin�	� + r cos�	�	��2� , �6�

where �̄�=��−�� −��. We could have written the energy
directly in terms of �̄� by switching from a �TKT�2 to a
TKKT parametrization as permitted by the unit-vector con-
straint. Fixed aster or vortex configurations carry no energy
cost from the term proportional to �̄�. Setting to zero the

ξ

ξ
θ

FIG. 1. Rod orientations around a general uniform +1 topologi-
cal defect. 	=0 corresponds to an aster, and 	=� /2 to a vortex.
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functional derivative of Fnematic with respect to  yields a
shape equation, which for an aster �	=0� becomes

0 = �
r sin��
cos2��

+
��

2
�− 2 cos��� + r sin���2

− 2r cos���� +
��

2
�1 +

1

cos2�� sin��
r

−
K1

2

sin��
r

.

�7�

For fixed vortices, the same shape equation holds after
switching the coefficients ��↔�� and K1↔K3.

For any membrane �hexatic or nematic� without stiffness
����=0�, defects have a simple universal shape resulting
from the competition between the in-plane misalignment cost
and surface tension. This can occur when the thermal persis-
tence length is small compared to the system size, and ther-
mal fluctuations have renormalized the stiffness to a small
value. The misaligned rods near the defect core can align by
bending out of the plane into the third dimension, at the cost
of increasing surface area. The optimum tangent angle is
given by the simple formula

cos�� =�2�r2

K1
=

r

r0
, �8�

where r0=�K1 /2� is the distance outside which surface ten-
sion dominates and flattens the surface. For a hexatic mem-
brane, one would write KA for K1. Integrating the angle gives
the universal shape

h�r� = r0�sech−1� r

r0
 −�1 − � r

r0
2� , �9�

which approaches vertical at r=0 where the height is loga-
rithmically divergent. This may be regulated by a cutoff,
such as the membrane thickness. As a reference, at half the
rim radius, h�r0 /2��0.45r0. In a hexatic membrane K1=K3
=KA, so asters and vortices have the same radius. In a nem-
atic membrane, asters and vortices have different radii; the
lower-energy defect also has smaller size.

The energy of this universal shape within the radius r0 is
equally divided between surface tension cost and splay cost,

Ebuckled = 2�r0
2� + �K1 = 2�K1. �10�

Note that the surface area inside r0 increases by exactly a
factor of 2 over a flat disk. Interestingly, the logarithmic
divergence of Eq. �3� disappears, and the energy is indepen-
dent of the short-distance cutoff a. Thus, buckling lowers the
energy of the defect.

This shape, Eq. �9�, is known as a parabolic pseudosphere
or antisphere, because it has constant negative Gaussian cur-
vature equal to −1 /r0

2 �27,28�. It is also known as a trac-
trisoid, because it is half the surface of revolution generated
by revolving a tractrix about its asymptote �43�. The tractrix
is the path of an object being dragged by a string of constant
length along a straight line that does not intersect the object.
Leibniz likened this problem to a dog owner dragging his
hound by its leash and named the solution hundskurve. The
hundskurve has been studied by Huygens and others �44�.

This construction makes it clear that the distance to the axis
along the line tangent to any point on the surface is constant,
i.e., the leash length is r0. These shapes of constant negative
curvature are also known in quantum gravity as solutions to
classical Liouville theory �45�.

This simple shape has singularities at the origin and at the
rim r=r0, which are modified by the membrane bending ri-
gidities �� and ��, respectively. Setting �� =0 removes all
derivatives of  from the shape equation, so a simple rear-
rangement provides the solution,

cos�� =�2�r2 + ��

K1 − ��

=��r/r1�2 + c

1 + c
, �11�

where r1=��K1−2��� /2� is the new rim radius, and c
=�� / �K1−2��� is related to the now finite slope at the tip.
For sufficiently large K1, the surface puckers out of the plane
for r�r1, with a profile

h�r� = 

r

r1

tan��cos−1��2�r2 + ��

K1 − ��

�dr �12�

= � r1

r/r1

1 �1 − u2

c + u2 du . �13�

For K1�2�� or for r1�r, this solution is not real, so =0
becomes the only solution to the shape equation.

Equation �13� is a complete elliptic integral of the second
kind �46�. We change variables u→�c sinh�u� to obtain

h�r� = � r1
�1 + c
�1 −

c cosh2�u�
1 + c

du , �14�

where the integration ranges from sinh−1�r / �r1
�c�� to

sinh−1�1 /�c�. In the study of surfaces with constant Gaussian
curvature, Eq. �14� is a familiar expression for an elliptic
pseudosphere �28�. Figure 2 shows an example elliptic pseu-
dosphere.

Buckling into an elliptic pseudosphere also reduces the
energy; however, the logarithmic divergence of the flat de-
fect’s energy, Eq. �3�, reappears. While the particular formula
for the energy of an elliptic pseudosphere is easy to calcu-
late, it is long and we omit it.

The parabolic pseudosphere avoids a divergent energy
near the core, Eq. �10�, but has a logarithmically diverging
tip height. The bending rigidity cuts off this tip height near

-1
-0.5

0

0.5

1

-1 -0.5 0 0.5 1
0.4
0.6
0.8

1

0.4
0.6
0.

lengths in
units of r1

FIG. 2. An example elliptic pseudosphere for r1=1 and c=1.
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the core. Near the origin, the elliptic pseudosphere is ap-
proximately cone shaped with slope �1 /c=��K1−2��� /��,

h�r� → �
r
�c

. �15�

If the r2 term in Eq. �11� were not present, the shape would
be a cone. Unlike the cone, pseudospheres have constant
Gaussian curvature,

1

R1R2
= det�Ki

j� = det�N̂ · �it�
j� �16�

=−
1

r1
2�1 + c�

, �17�

where N̂ is the unit vector proportional to t�1� t�2 and we have
carried through the computation after inserting the coordi-
nate tangent vectors for the elliptic pseudoshere,

t�1 = �cos���,sin���,�1 − �r/r1�2

c + �r/r1�2 , �18�

t�2 = „− r sin���,r cos���,0… . �19�

Even with finite �� the above shape retains a cusplike sin-
gularity at the origin. We may well question how the singu-
larity is modified by inclusion of cutoffs and higher-order
terms. A simple short-distance cutoff a can be introduced as
the radius of a hemispherical or similar cap over the singular
point at the origin. The curvature energy density �1 /a2 in-
tegrated over the cap’s area �a2 leads to a finite energy. We
can then regard this as a benign singularity that adds a con-
stant to the defect core energy Ec in Eq. �3�.

Substituting Eq. �11� into the full shape equation, Eq. �7�,
leaves a term proportional to both �� and to r, so the elliptic
pseudosphere is expected to remain valid as r→0 near the
core. The situation at the rim is very different: Designating
the distance from r1 by �=1−r /r1, one sees that 
�� as
�→0+ and is zero immediately outside this radius. The
abrupt rim would cause the energy proportional to �� to di-
verge, so when �� �0, the defect shape must be different.
Since  tends to zero away from the core, we linearize the
shape equation for small  and � to

0 � ��K1 − 2���
1

r
− 2�r + 2���� + r�� . �20�

After changing variables to � and redefining →��� to be a
function of �, the linearized shape equation is

0 = ��� − 2� −
2���� − 1�
K1 − 2��

�� + �� − 1��� . �21�

Note that the approximation is made for small  and �, and
� need not be small. For real-valued ���, this equation is
solved by modified Bessel functions of the second kind with
imaginary order. The order and argument both diverge with
vanishing ��, as

��� 
 K�i�,�
r

r1
� , �22�

with

� =�K1 − 2��

2��

. �23�

This solution decays exponentially and has no zeros for r1
�r. Since our parametrization does not handle overhanging
surfaces,  is limited to the range �−� /2,� /2�. Thus, for a
given value of �, the amplitude must be such that the solu-
tion stays in this range. For � of order 1 and larger, an am-
plitude of unity yields a  that is sufficiently small for r1
�r that the linearized shape equation is valid. It approaches
zero asymptotically, so the rim radius at which =0 shifts to
infinity. The asymptotic form of Eq. �22� is �47,48�

 �
e−�3/2�r/r1

� r
r1

�
for ��,r� → � , �24�

which shows that bending rigidity introduces a new length
scale

r2 ��2

3

r1

�
=�2��

3�
. �25�

As shown in Fig. 3, this solution for  oscillates sharply near
the core, which invalidates the small-� approximation. In
this region, nonlinearities take over and the shape crosses
over to the elliptic pseudosphere. As �� approaches zero, the
Bessel function becomes flat for r1�r and oscillates rapidly
inside this radius, thus restoring the abrupt rim.

IV. CONCLUSIONS AND OUTLOOK

We predict that topological defects can buckle nematic
membranes into elliptic pseudospheres with exponentially
decaying rims. Let us explore this possibility in the case of a
freely suspended thin film of smectic-C liquid crystal. The
observation that these films maintain orientational order at
room temperature suggests that K1 �and K3� are at least of the
order of kBTroom�4�10−14 erg. If we assume a surface ten-
sion typical of bulk liquid crystal interfaces, �

0.2 0.4 0.6 0.8 1 1.2 1.4

-0.4

-0.2

0.2

0.4

Radius in units of r1

an
gl

e
χ

FIG. 3. Tangent angle �not the height� as a function of radius in
units of r1. Solid curve: The Bessel function solution for ��� for
�=1. Dashed curve: cos−1����r /r1�2+c� / �1+c�� for c=2.5 chosen
to suggest matching in the crossover.
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�10 erg /cm2, and ignore bending rigidities ����=0�, then
from K�kBTroom, we would estimate a rim radius r0
=�K /2��1 /2 nm, which is smaller than a typical film
thickness and beyond the limits of this coarse-grained model.
To create larger �observable� defects requires either smaller
surface tension or larger in-plane stiffness than this initial
estimate. Some physical systems may allow this.

For example, studies of thin films of liquid crystals often
observe a small surface tension, because the chemical poten-
tial for particles in the film is similar to the chemical poten-
tial in the meniscus surrounding the film �32�. This reservoir
on the edge of the suspended film allows the film to increase
its area at a low energetic cost. One might control the size of
buckled defects by manipulating the surface tension via this
reservoir.

In addition to having a surface tension smaller than our
initial estimate, some materials have observed values of �K�
one or two orders of magnitude larger than room tempera-
ture. For example, scattering studies by Spector et al. on thin
films of smectic-C 4-�2–methylbutyl�-phenyl-4’-�octyloxy�-
�1,1’�-biphenyl-4–carboxylate �8OSI� found large values of
�K� and surface tension made small by the meniscus �4�. This
particular study used a smectic-C tilt angle of 32.2° and
found K1 /K3=4.6��0.4�, �� /K3=3.4��0.3�, �� /��

=5.5��3.1�, �� /�� =75��24�, and �� �10−12 erg. Unfortu-
nately, the large value of �� /K3 prevents buckling. Since
K1 /K3�1, flat vortices should be stable relative to asters.
For other tilt angles or other materials, one might hope to
find lower values of �� /K3 that allow buckling.

For sufficiently floppy films, buckled defects could be ob-
servable via specular reflection or by interferometry tech-
niques used to measure the flatness of mirrors. Additionally,
islands of smectic-C material may provide means of manipu-
lating single defects with laser tweezers, although coupling
between the island’s multiple smectic layers may introduce
additional effects �49�.

While smectic-C 8OSI has sufficiently small surface ten-
sion and large in-plane stiffness, its bending rigidity sup-
presses buckling. That such shapes have not been observed
so far in other materials may well be an indication of the
importance of bending rigidity. Since typical lipid mem-
branes have ��5kBTroom, this is a severe constraint. We
note, however, that for stiff rods �nanotubes, cytoskeletal
filaments� embedded in membranes, the rigidities �� and ��

and corresponding stiffnesses K1 and K3 may well differ by
orders of magnitude. The challenge remains to obtain esti-
mates of these parameters for specific microscopic models,
and come up with an appropriate system for the study of
buckled defects. Observations of these shapes in nematic
membranes may provide estimates of the ratios between ��,
��, K1, K3, and �. Measurements of �� are possible via other
shapes as described in Appendix A.

If one could control the anisotropic bending rigidities in-
dividually, one might be able to sweep a nematic membrane
through a sequence of regimes in which different types of
defects are stable. For example, for K3�K1, if one could
hold �� fixed while adjusting ��, one might observe buckled
vortices when 2���K1−K3+2��, and buckled asters when
K1−K3+2�� �2���K1, and buckled vortices again when
K1�2��. By increasing �� while keeping �� in any of these

regimes, one would flatten the preferred shape of vortices.
Thus, it is possible for vortices and asters to prefer buckled
or flat shapes independently.

In focusing on shapes of minimal energy, we have ne-
glected thermal fluctuations. At long distances, thermal fluc-
tuations reduce the differences between aster and vortex de-
fects in weakly anisotropic membranes �31�. In future work,
we would like to explore if this is still the case in strongly
anisotropic membranes, or if thermal fluctuations can en-
hance the anisotropy.

Unlike bulk nematics, nematic sheets often appear with
naturally periodic boundaries such as closed vesicles. By the
Poincaré-Brouwer theorem �50�, a genus-zero nematic
vesicle must have topological charge of +2. In fact, defects
can burst the vesicle �51–53�. This resembles Bryopsis
sprouting branches out of defects in its tethered nematic cell
wall—a topic to which we hope to return in the future.

ACKNOWLEDGMENTS

We thank Jacques Dumais, Vincenzo Vitelli, Noel Clark,
Matthew Headrick, and Ari Turner for helpful conversations.
J.R.F. thanks the Fannie and John Hertz Foundation for sup-
port. This work was supported by the NSF through Grant No.
DMR-04-26677 �M.K.�.

APPENDIX A: NEMATIC MEMBRANES IN FIXED
GEOMETRIES

While �� did not contribute to the shape of +1 defects, it
affects other geometries. Following de Gennes’ molecular
field argument �54�, we impose the unit-vector constraint via
a Lagrange multiplier � and seek energy-minimizing fila-
ment configurations in fixed geometries. In a two-bein basis
aligned with the principal directions, the curvature tensor is
diagonal and Ti=ea

i Ta, where ea
i is a transformation to local

coordinates in which gij =�ij at each point �29�. In the prin-
cipal two-bein,

Ta = �cos�	�
sin�	�

 . �A1�

In the following, there is no summation over a or ā= �a+1�
mod �2�. The functional derivative of Eq. �1� in the principal
two-bein reads

Ha �
�F

�Ta
= − ���1,�2�Ta �A2�

=Ta���Ca
2 + ��Cā

2 + �̄�Tā
2�C1 − C2�2� − K1�a�DcTc�

− K3�ba�b��cdDcTd� �A3�

=Ta���Ca
2 + ��Cā

2 + �̄�Tā
2�C1 − C2�2� − K1�a��c	 − Ac�T�c

− K3�ba�b��c	 − Ac�Tc, �A4�

where Ca are the principal curvatures and Aa= ê1 ·�aê2 is the
spin connection. The three-vectors êa=ea

i t�i form an orthonor-
mal basis in the principal two-bein. To set up the molecular
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field equation, one must carry out the derivatives and pull out
an overall factor of Ta to obtain an expression for � that is a
function of the index a. One obtains an equation for 	 by
requiring � to be a scalar, i.e., to have the same value for
both a=1 and a=2. Solutions to this equation for 	 extremize
the energy.

Considering first K1=0=K3, the equation yields a simple
solution for 	,

cos2�	� =
1

2
�1 +

�� − ��

�� − �� − ��

C1 + C2

C1 − C2
 . �A5�

This is valid only with both components of Ta nonzero, so
	=0 and � /2 must also be considered in the list of possible
	 values. One must check which candidate value for 	 mini-
mizes the energy for particular values of ��� and the princi-
pal curvatures. In the following, we list a few special cases.
When ���� =����� /2 and C1�C2, one has that 	=� /4
minimizes the energy if

�

��

� −
�C1 − C2�2

4C1C2
. �A6�

Otherwise, the filaments align with the least curved direc-
tion.

When ��=�� +��, so that �̄�=0, the orientation can be
found by minimizing the energy with respect to 	 directly,
instead of the molecular field equation. The result for K1
=0=K3 and C1�C2 is shown in Table I.

On a developable surface, i.e., C1=0 and C2�0, when
���2 min��� ,��� the stable orientation is aligned with the
uncurved direction. For smaller values of ��, a special inter-
mediate angle is the global minimum,

cos2�	� =
2�� − ��

2��� + �� − ���
. �A7�

Note that this occurs only when both parallel and perpen-
dicular bending are more costly than �� /2. This might result
from rods that weaken the sheet or have a specific texture on
the rod’s surface.

For a developable surface, the spin connection is zero, so
the covariant derivatives become regular partial derivatives.

Thus, on a cylinder, far from boundaries, a constant orienta-
tion solves the full molecular field equation with the gradient
terms included. This could allow experimental measurement
of �2�� −��� / ��� +��−���.

In more general geometries, in-plane splay and bend com-
pete with out-of-plane bending in a nonlinear partial differ-
ential equation, which, in principle, can be numerically inte-
grated to fit model parameters to vectorized images of a real
nematic membrane. The computation of model parameters
from such images in the presence of topological defects re-
quires care.

APPENDIX B: STABILITY OF BUCKLED DEFECT
SHAPES

As discussed in Appendix A, the relative strength of ��

plays an important role in the stability of orientation patterns
on curved shapes. Substituting the principal curvatures for
the elliptic pseudosphere into Eq. �A5� yields an equation for
	 that is not constant,

cos2�	� =
2���r/r1�2 − ��

2��� − ���
, �B1�

and thus not the perfect aster �or vortex� that we assumed
when setting up the shape equation, Eq. �7�. Since Eq. �A5�
was derived assuming K1=0=K3, the question remains
whether the buckled defect is stable to perturbations away
from a perfect aster �or vortex�.

To check this, we construct linearized evolution equations
for small perturbations,

d

dt
��

�
 
 −

�F

���,��
� M��

�
 , �B2�

where � represents deviations of the surface away from a
pseudosphere, and � represents deviations away from an as-
ter �	=0�. Perturbations of the height field couple with per-
turbations of the angle field, so all four components of the
2�2 matrix of differential operators, M, are nonzero. The
perturbations are functions of both radius and angle, and are
generally not radially symmetric. To solve this, we write the
perturbations in a Fourier basis,

���r,�,t�
��r,�,t�

 = �
m
��m�r�

�m�r�
eim�e�mt, �B3�

where each two-vector ��m ,�m� is independent. Substituting
this solution into the evolution equation gives a separate set
of coupled equations for each m value.

Neglecting bending rigidity, and choosing units of energy
such that �=1 and units of length such that K1=2�, we have
for each value of m

M�m� = �
r„− K3m2r + 2�1 − r2���2 − 4r2��r + r�1 − r2��r

2�…
1 − r2

im��2 − K3�r − �2 − �2 − K3�r2��r�
�1 − r2

im�K3r + �1 − r2��2 − �2 − K3�r2��r�
r�1 − r2�3/2 −

2m2

r4 + K3�r
2 � . �B4�

TABLE I. Stability criteria for various angles.

Angle Stability criterion

	=0 C1�� �C2��

	=� /2 C1���C2��

cos2�	� =
C1�� − C2��

�C1 − C2���� + ���
C1���C2��, C1�� �C2��
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For m=0, the equations decouple. Since these are perturba-
tions, we must find real-valued solutions that vanish at the
boundaries r=0 and 1. The equation for � has such a solu-
tion,

� 
 sin�r�− �0

K3
 , �B5�

if �0=−K3�2n2 for integer n. This is always negative. The
equation for � has the real-valued solution

� 
 r2a
2F1�a,a +

3

2
;2a +

3

2
;r2

+ r2b
2F1�b,b +

3

2
;2b +

3

2
;r2 , �B6�

where 2F1 is the Gauss hypergeometric function and
a= �−1−�1+2�0� /4 and b= �−1+�1+2�0� /4. Since the third
argument exactly equals the sum of the first two, 0�r�1 is
the convergent domain for these functions. An ad hoc nu-
merical study indicates that �0→−� might extend this do-
main and allow the limit ��1�→0. These functions also di-
verge at r=0, and again a large negative �0 appears to
mediate this because the function oscillates rapidly and
might average to zero as r→0. We lack an analytic treatment

of this asymptotic regime, so we turn to a numerical method
below.

Considering 0�m and substituting u=r2, one sees that
Eq. �B4� consists of second-order ordinary differential equa-
tions with nonessential singularities at two points �the
boundaries�, so the equations can be transformed into hyper-
geometric differential equations �55�. By combining linearly
independent solutions, one might construct real solutions that
meet the boundary conditions for all values of m. After sat-
isfying these constraints, one would obtain expressions for
�m, which, when negative, indicate stable regions of param-
eter space. This approach is complicated even when rigidity
is neglected.

Instead of taking this approach, we have checked stability
numerically by discretizing the fields. We represent the de-
viations of the height and angle fields by a large column
vector of field values at discrete steps in radius and polar
angle. By representing the derivative operators as banded
square matrices acting on this large vector, one obtains a
matrix of numbers for any given set of parameter values. The
largest nonzero eigenvalue of this matrix determines the sta-
bility of the shape. If the largest nonzero eigenvalue is nega-
tive, then that set of parameters suppresses perturbations and
the shape remains stable.

We have carried out such a numerical procedure. Gener-
ally, the buckled aster is stable for 2���K1�K3 and any
0���. The analogous statement holds for buckled vortices.
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